

OAWL: High TRL Doppler Wind Lidar for 3D Winds Mission Demonstration

Sara Tucker & the Ball OAWL team Ball Aerospace, stucker@ball.com

Sunil Baidar, Mike Hardesty NOAA/CU-CIRES

August 23, 2017

NOAA Emerging Technologies Workshop

- Optical Autocovariance Wind Lidar (OAWL)
- Capability: Directly measure wind speed and direction profiles; options for full atmospheric profile coverage (UTLS)
 - Airborne: DC-8
 - Proposed Space-based: ATHENA-OAWL mission concept Earth Venture Instrument, ISS
 - Future Space-based: Free Flyer (e.g. LEO)
- Development
 - Technical design/development @ Ball Aerospace
 - Funding: Ball Aerospace Internal Research and Development (IRAD) and NASA Earth Science Technology Office (ESTO)
 - Partnerships: Fibertek, NASA-WB-57 NOAA-ESRL-CSD/CU-CIRES, ONR, Y.E.S.

- Space: ATHENA-OAWL Mission Concept
 - Based on CALIPSO technology (laser, telescope, etc.)
 - First proposed full US DWL mission in decades
- Airborne: OAWL Demonstrator/science systems
 - GrOAWL (532 nm) WB-57
 - HAWC-OAWL (532 & 355 nm) DC-8
 - Key capability & distinguishing innovation
 - Two line of sight Doppler lidar wind measurements can provide continuous curtains of wind speed and direction profiles
 - Smaller, high TRL, laser wavelengths provide winds in low aerosol regions

- Early Successes for OAWL
 - IIP 2007: Ground-based and demonstrations and validation with NOAA ESRL Doppler Wind lidars, Airborne demonstration and validation with Radar wind profilers
 - Earth Venture Instrument mission proposals (2013 and 2016)
 - IIP 2013: Two look, two wavelength system devleopment
 - Earth Venture Technology Development: competed funding to build and fly an airborne demonstrator for EV-I4 concept with two looks

As presented at the 2017 NOAA Emerging Technologies Workshop

DropSonde LOSV [m/s]

OAWL: Like CALIPSO data with wind profiles... with option for upper troposphere

Image: Liu et al. JGR 2008

Anticipated impacts of DWL

- Mission services and service gaps filled/improved with this capability:
 - 3D Winds measurements: Equivalent data of hundreds more radiosondes/day
 - Orbit provides measurements distributed over the oceans and lower hemisphere
- Efficiencies to be realized with this capability:
 - Multiple satellites may be reduced
 - Better vertical resolution data than otherwise might be acquired through many sounding satellites
- Anticipated user information needs satisfied by this capability:
 - Direct wind profile data to source weather models
 - Improved motion-vector winds uncertainty by "locking down" cloud/aerosol layer heights
 - Upper tropospheric, clear-air winds
- How will society ultimately benefit from this capability?
 - Improved weather forecasts → safer society (land, sea, and air), economic improvements, etc.

Anticipated impacts of ATHENA-OAWL

- Data assimilation of ISS OAWL data into forecasting models expected to:
 - extend the useful range of medium-range forecasts by at least 4 h in the mid-latitudes
 - Reduce RMS wind error in the tropics by 10% in the 24 h forecast.
- Expectation substantiated by:
 - Stoffelen et al. 2006: OSSE conducted for ADM-Aeolus; showed simulated DWL data improves 500 hPa medium-range forecasts in the Northern Hemisphere extratropics by an average of 0.4 days (9.6 hours),
 - Riishojgaard et al. 2012 and Atlas et al. 2015: Doppler wind lidar OSSE study results (including for a two-look OAWL system)
 - Horányi et al. 2014: Observing System Experiments (OSEs) with actual wind observations
 - Langland and Baker 2004: Forecast Sensitivity Observation Impact (FSOI) analysis applied to the NASA GEOS-5 data assimilation system
 - Folger and Weissmann (2014): impact of lidar cloud height assignment on AMV data

Predicted performance based on lowpower system with conservative "background mode" aerosol model

OAWL: optimized to meet science objectives

System Optimization Wavelength	Aerosol Higher precision, reduced vertical coverage	Aerosol & Molecular Reduced precision, greater vertical coverage (UTLS)
355 nm	 Strong aerosol backscatter for good aerosol precision (1 ms) molecular return shot noise Low background noise 	 Aerosol AND molecular both add signal (fringe) → good SNR through the troposphere Low background noise Airborne Systems UPMC
355nm & 532 nm	 Aerosol winds at 2λ (see above) + Aerosols at two wavelengths HOAWL, HAWC 	 Nested OAWL System: 355: short OPD for Molecular ←532: long OPD for Aerosol
532 nm	 Lowest risk/cost approach to aerosol winds ATHENA-OAWL/GrOAWL 	 short OPD not optimal for 532 nm due to less molecular return

Anticipated impacts specific to OAWL

- ATHENA-OAWL design based on high TRL/high heritage CALIPSO lidar
- OAWL Wavelength(s):
 - 532 nm and/or 355 nm see enhanced backscatter off a large range of aerosol sizes
 - OAWL may be optimized to provide molecular channel using 355 nm wavelength

Desired Attribute		Space-based OAWL	Airborne OAWL	
Geo Coverage	Global	ISS orbit: > 80% of Earth's surfaceFree-flyer: Global coverage	Regional coverage only, based on aircraft	
Horizontal Resolution	200 km	< 100 km (exceeds desired performance)		
Vertical Resolution	2.0 km	0.2 - 1.0 km (exceeds desired performance)		
Parameter Accuracy	1.5 m/s	\leq 0.5 m/s (exceeds desired performance		
Vertical Domain	10 m to 16 km	Surface to 25 km altitude (exceeds desired performance)		
Update Interval	6 hours	 ISS orbit: Repeat is ~ 3 days, but different times of day Polar Orbiting/Sun Synchronous: 16 days (single spacecraft); 8 days (two spacecraft) 	Dependent on # of sensors deployed and size of regional coverage;	
Data Latency	(not listed, but of great interest to weather models)	<1 hour when TDRSS is available	Low-data rate wind profiles in near real-time using SatCom, based on aircraft selected	

Additional Information

- http://www.ball.com/aerospace/programs/oawl
- Papers/Presentations
 - <u>http://cires1.colorado.edu/events/lidarworkshop/LWG/</u> :(Previous meetings back to 2007)
 - Tucker, Coherent Laser Radar Conference (CLRC), 2013: <u>http://www.tsc.upc.edu/clrc/wp-content/uploads/Manuscripts/clrc2013_submission_19.pdf</u>
 - and 2016: <u>https://clrccires.colorado.edu/4pagesummaries/F/F5.pdf</u> and <u>https://clrccires.colorado.edu/presentations/F/F5.pdf</u>
 - Baidar, CLRC 2016: <u>https://clrccires.colorado.edu/4pagesummaries/F/F6.pdf</u>
 - Weimer, CLRC 2016: <u>https://clrccires.colorado.edu/presentations/F/F8.pdf</u>
 - Tucker, SPIE Optics and Photonics, 2015: <u>https://spie.org/Publications/Proceedings/Paper/10.1117/12.2190792</u>
- ESTO Tasks
 - OAWL: <u>http://www.estotechnology.us/techportfolio/pdf/quadCharts/1509.pdf</u>
 - HOAWL: <u>http://www.estotechnology.us/techportfolio/pdf/quadCharts/1770.pdf</u>
 - FIDDL: <u>http://www.estotechnology.us/techportfolio/pdf/quadCharts/1791.pdf</u>
 - GrOAWL: <u>http://www.estotechnology.us/techportfolio/pdf/quadCharts/1913.pdf</u>
 - HAWC-OAWL: <u>http://www.estotechnology.us/techportfolio/pdf/quadCharts/1857.pdf</u>
- ETW 2017 Poster Session

The Evolution of OAWL

Since 2003, Ball has worked in a public-private partnership with NASA and weather/wind lidar communities to advance space-based wind lidar technology and fill the global wind measurement gap.

2 looks, 2 telescopes to

demonstrate geometry

- Coherent system
- Autonomous flight tests on NASA WB-57

As presented at the 2017 NOAA Emerging Technologies Workshop

HSRL Aerosol retrieval

algorithms

11

Hardware design/build for DC-8

integration

EXTRAS

As presented at the 2017 NOAA Emerging Technologies Workshop

Existing global winds measurements

Surface Only

Scatterometry (Quickscat)

Motion Vector (aerosol/cloud tracking)

Visible or water vapor channels Requires 3 cloud images, cloud brightness temp, cloud mask, cloud height, cloud top pressure (for Water Vapor: GFS forecast temperature profile)

Requires Cloud/WV Features Limited Altitudes

In-situ Profiling

Aircraft

Land-based coverage Radiosondes

Wind Lidars and the atmosphere

Emerging

- Field-widened, Mach-Zehnder Interferometer (MZI): Patent #s: US7929215B1, US8077294B1
- Four detector channels sample interferometer fringe phase (wind) and amplitude (aerosol). --- Outgoing "T0" pulses

 - --- Atmospheric Returns at range
- Fringes wrap no "out of band" concerns. Unwrap 2π jumps (100 m/s discontinuities) in processing.
- Likewise, platform motion translated to phase, "wrapped" and added to T0 phase offset.
- T0 phase offset used to adjust detector returns for every pulse - prior to accumulation/phase fit: no laser pulse-topulse stability requirements
- After accumulation, the shifted detector values are fit to determine the return phase, $\Delta \phi$, related to the line-of-sight wind speed, V_{10S} by

$$V_{LOS} = \frac{\Delta \phi \lambda c}{2\pi (2OPD)}$$

ATHENA-OAWL: path-finding science for next-generation global weather prediction and climate analysis

- ATHENA-OAWL: Aerosol Transport, Hurricanes, and Extra-tropical Numerical weAther prediction using OAWL.
- Design-to-cost approach to NASA Earth Venture Instrument based on heritage systems
- Co-located wind and aerosol profiles provide:
 - breakthroughs in modeling and prediction of low and mid-latitude weather and climate.
 - better understanding of relationships between aerosol radiative forcing, atmospheric dynamics and the genesis and lifecycle of tropical cyclones
 - understanding of the impacts of long-range dust and aerosol transport on global energy and water cycles, air quality, and climate.

OAWL for Full Atmosphere Wind Profiling

- OAWL path to *full* atmospheric wind profiles
 - Measure aerosol winds @ 532 nm more precision using the *existing* long OPD
 - Measure molecular winds @ 355 nm more coverage using a new short OPD
 - BOTH wind measurements can achieved by using two systems or a "nested" interferometer:
 - Short (molecular) OPD is "nested" inside the long (aerosol) OPD: "Nested OAWLs"
 - Same detectors as used for the dual wavelength OAWL
- 355 nm lasers:
 - Aeolus has qualified a 355 nm wavelength laser for space
 - Fibertek also working qualification of 355 nm HEUVD laser system

Upper atmosphere – molecular Lower atmosphere – aerosol

